## **DIGISTAR**

Advanced TEM electron diffraction tools for nanocrystal structure determination

## APPLICATION NOTES 3D PRECESSION DIFFRACTION TOMOGRAPHY





## ENABLE SYNCHROTRON PERFORMANCE WITH YOUR TEM



### CHALLENGE SOLVING ANY NANOMATERIAL STRUCTURE



#### SMALL CRYSTALS

In case crystals are smaller than 0.5 micron in size, X-Ray reflections peaks are getting progressively broader thus making impossible the refinement of the crystal cell parameter.

### **TOO MANY OVERLAPPING** X-RAY PEAKS

In case of poorly crystallized materials like pharmaceuticals, zeolites and inorganic-organic hybrid ECS-23 catalyst, Synchtrotron X-Ray diffraction pattern is poorly defined with many overlaping peaks. Evaluation of crystal cell paremeters and correct intensity measurement is impossible.





#### MANY CRYSTAL PHASES

In case of complex multiphase systems where new unknown phases are found in very small amounts (like the HAPY-Hydrous Al bearing pyroxene is synthetized as highpressure phase in MgOAl<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O system), their presence cannot be detected in Synchtrotron powder X-Ray pattern.



### PRECESSION DIFFRACTION & 3D DIFFRACTION TOMOGRAPHY SOLUTION

Transmission Electron Microscope (TEM) allows to study nm size crystals. By tilting (manually/automatically) around an arbitrary axis a single nanocrystal (tilt range usually > 120° e.g. 120 diffraction patterns with step 1°) in combination with precession electron diffraction (PED), the reciprocal cell can be reconstructed and crystal cell parameters can be evaluated automatically and precisely (error 2-5 %). Reflection intensities can also be measured automatically (completeness of reciprocal space > 60 %) to enable the solution of the crystal structure.



# 3D PRECESSION DIFFRACTION TOMOGRAPHY

**SPECIFICATIONS** 





Works with any TEM with 120-200-300 kV

LaB6 /W or FEG filament
Selected area (SAED) or Nanobeam (NBD) mode



Smallest crystal used:  $\sim$  **100 nm** organics &  $\sim$  **20 nm** inorganics

Application for agglomerated / embedded samples Polyphasic materials



Diffraction data collection with **any CCD camera** (35 mm port or on axis) 1k x 1k or higher

Diffraction data collection with single tilt holder / tomography holder or cryoholder (for beam sensitive samples)

Minimum tilt (for cell parameters determination) -15°/+15° 1° step Recommended tilt (for crystal structure determination) -45°/+45° 1° step





#### DigiSTAR compatible with any TEM

Beam precession (0-4°) TEM configuration dependent 1.2° recommended for PED tomography

Manual / automatic PED data collection (TEM config. dependent )



#### Software for 3D diffraction tomography

Reconstruction of reciprocal space by collected PED patterns
Automatic cell parameter determination (2-5 % error)
Space group determination
Automatic measurement of 3D reflection intensities

for ab-initio structure determination of any structure

